No, I said they hadn’t demonstrated it. But 95% is close enough, I stand corrected.
In that case I stand corrected on the whole orbit bit. Thanks for taking the time.
I didn’t say “a little” money. It may be important or critical for the business but from a technical perspective, demonstrating how it can safely bring loads up and down decides whether the whole concept is actually feasible. That’s when people will start to get excited.
As far as I understood it, SpaceX uses the word “orbit” liberally. If it reaches the hight where an orbit would be possible, that’s “being in orbit” for them. In an actual orbit, the rocket would not fall back down again in an hour or so without active breaking. If my understanding is incorrect, I’m happy to be corrected. And even of that was achieved soon, it’s still all without demonstrating that the starship could actually carry a load and return it safely. Not even an inexpensive dummy load. All SpaceX is showing in their live feeds are empty cargo holds that fill up with hot gases and fumes during reentry.
I think the average person gets it right. It’s a nice feat to catch the booster and it will save money. But that’s a side quest. The main quest of getting an actual load to orbit and beyond is still pretty far away. At least compared with the official time line where they wanted to achieve much more than that three years ago.
I specifically picked the statistic that claimed to have included the full cost of installing something new. Most other statistics only include prolonging the life of existing plants, thus ignoring the installation costs completely. You can just quote the paragraphs that prove your point the same way I have and then we can discuss further. Maybe I made a mistake, who knows.
Extremely cheap per kilowatt? Every statistic out there that I’ve seen and that includes government funding, as well as construction and deconstruction costs, paints a different picture. Nuclear is only competitive with coal or the relatively underdeveloped solar thermal.
In 2017 the US EIA published figures for the average levelized costs per unit of output (LCOE) for generating technologies to be brought online in 2022, as modelled for its Annual Energy Outlook. These show: advanced nuclear, 9.9 ¢/kWh; natural gas, 5.7-10.9 ¢/kWh (depending on technology); and coal with 90% carbon sequestration, 12.3 ¢/kWh (rising to 14 ¢/kWh at 30%). Among the non-dispatchable technologies, LCOE estimates vary widely: wind onshore, 5.2 ¢/kWh; solar PV, 6.7 ¢/kWh; offshore wind, 14.6 ¢/kWh; and solar thermal, 18.4 ¢/kWh.
Emphasis mine, source: https://world-nuclear.org/information-library/economic-aspects/economics-of-nuclear-power
Windows hss supported slashes in both directions for a very long time. I almost exclusively use forward slashes to reduce mental load when switching between OSes.
No. Because the python version of the host and the target server must loosely match up. Otherwise you get some cryptic error messages in some unexpected modules. Red Hat’s solution: just manage RHEL 9 targets from RHEL9 hosts and RHEL8 from RHEL8 hosts. There is no official way to align python versions across that major.